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Abstract
The vertebrate adaptive immune system provides a flexible and diverse set of molecules to

neutralize pathogens. Yet, viruses such as HIV can cause chronic infections by evolving as

quickly as the adaptive immune system, forming an evolutionary arms race. Here we intro-

duce a mathematical framework to study the coevolutionary dynamics between antibodies

and antigens within a host. We focus on changes in the binding interactions between the

antibody and antigen populations, which result from the underlying stochastic evolution of

genotype frequencies driven by mutation, selection, and drift. We identify the critical viral

and immune parameters that determine the distribution of antibody-antigen binding affini-

ties. We also identify definitive signatures of coevolution that measure the reciprocal

response between antibodies and viruses, and we introduce experimentally measurable

quantities that quantify the extent of adaptation during continual coevolution of the two

opposing populations. Using this analytical framework, we infer rates of viral and immune

adaptation based on time-shifted neutralization assays in two HIV-infected patients. Finally,

we analyze competition between clonal lineages of antibodies and characterize the fate of a

given lineage in terms of the state of the antibody and viral populations. In particular, we

derive the conditions that favor the emergence of broadly neutralizing antibodies, which

may have relevance to vaccine design against HIV.

Author Summary

We normally think of evolution occurring in a population of organisms, in response to
their external environment. Rapid evolution of cellular populations also occurs within our
bodies when the adaptive immune system works to eliminate infections. Some viruses,
such as HIV, are able to evolve as quickly as our immune response, resulting in a chronic
infection with both viral and immune populations perpetually adapting. Here we develop
a mathematical description of this coevolutionary process, discover key parameters that
govern the distribution of interactions between the two populations, introduce principled
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measures of adaptation, and analyze the conditions under which highly potent broadly
neutralizing antibodies will emerge and dominate the immune response.

Introduction
It takes decades for humans to reproduce, but our pathogens can reproduce in less than a day.
How can we coexist with pathogens whose potential to evolve is 104-times faster than our own?
In vertebrates, the answer lies in their adaptive immune system, which uses recombination,
mutation, and selection to evolve a response on the same time-scale at which pathogens them-
selves evolve.

One of the central actors in the adaptive immune system are B-cells, which recognize patho-
gens using highly diverse membrane-bound receptors. Naive B-cells are created by processes
which generate extensive genetic diversity in their receptors via recombination, insertions and
deletions, and hypermutations [1] which can potentially produce*1018 variants in a human
repertoire [2]. This estimate of potential lymphocyte diversity outnumbers the total population
size of B-cells in humans, i.e.,*1010 [3, 4]. During an infection, B-cells aggregate to form ger-
minal centers, where they hypermutate at a rate of about*10−3 per base pair per cell division
over a region of 1-2 kilo base pairs [5]. The B-cell hypermutation rate is approximately 4–5
orders of magnitude larger than an average germline mutation rate per cell division in humans
[6]. Mutated B-cells compete for survival and proliferation signals from helper T-cells, based
on the B-cell receptor’s binding to antigens. This form of natural selection is known as affinity
maturation, and it can increase binding affinities up to 10–100 fold [7–9], see Fig 1A. B-cells
with high binding affinity may leave germinal centers to become antibody secreting plasma
cells, or dormant memory cells that can be reactivated quickly upon future infections [1].
Secreted antibodies, which are the soluble form of B-cell receptors, can bind directly to patho-
gens to mark them for neutralization by other parts of the immune system. Plasma B-cells may
recirculate to other germinal centers and undergo further hypermutation [8].

Some viruses, such as seasonal influenza viruses, evolve quickly at the population level, but
the adaptive immune system can nonetheless remove them from any given host within a week
or two. By contrast, chronic infections can last for decades within an individual, either by path-
ogen dormancy or by pathogens avoiding neutralization by evolving as rapidly as B-cell popu-
lations. HIV mutation rates, for example, can be as high as 0.1–0.2 per generation per genome
[10]. Neutralizing assays and phylogenetic analyses suggest an evolutionary arms race between
B-cells and HIV populations during infection in a single patient [11–15]. Viruses such as HIV
have evolved to keep the sensitive regions of their structure inaccessible by the immune system
e.g., through glycan restriction or immuno-dominant variable loops [16, 17]. As a result, the
majority of selected antibodies bind to the most easily accessible regions of the virus, where
viruses can tolerate mutations and thereby escape immune challenge. Nonetheless, a remark-
ably large proportion of HIV patients (*20%) eventually produce antibodies that neutralize a
broad panel of virions [18, 19] by attacking structurally conserved regions, such as the CD4
binding site of HIV env protein [14, 20–23]. These broadly neutralizing antibodies (BnAbs),
can even neutralize HIV viruses from other clades, suggesting it may be possible to design an
effective HIV vaccine if we can understand the conditions under which BnAbs arise [14, 20,
23–27].

Recent studies have focused on mechanistic modeling of germinal centers in response to
one or several antigens [7, 28], and elicitation of BnAbs [27, 29]. However, these studies did
not model the coevolution of the virus and B-cell repertoire, which is important to understand
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how BnAbs arise in vivo. Modeling of such coevolution is difficult because the mechanistic
details of germinal center activity are largely unknown [15, 30], and the multitude of parame-
ters make it difficult to identify generalizable aspects of a model. While evidence of viral escape
mutations and B-cell adaptation has been observed experimentally [11–14] and modeled
mechanistically [27, 29], it is not clear what are the generic features and relevant parameters in
an evolutionary arms race that permit the development, or, especially, the early development of
BnAbs. Phenomenological models ignore many details of affinity maturation and heterogene-
ity in the structure of germinal centers and yet produce useful qualitative predictions [15, 30,

Fig 1. coevolution of antibodies and viruses. (A) Schematic of affinity maturation in a germinal center. A naive, germline B-cell
receptor (black) with marginal binding affinity for the circulating antigen (red pentagon) enters the process of affinity maturation in a
germinal center. Hypermutations produce a diverse set of B-cell receptors (colors), the majority of which do not increase the
neutralization efficacy of B-cells, except for some beneficial mutations that increase binding affinity (dark blue and green) to the
presented antigen. The selected B-cells may enter the blood and secrete antibodies, or enter further rounds of hypermutations to
enhance their neutralization ability. Antigens mutate and are selected (yellow pentagon) based on their ability to escape the current
immune challenge. (B)Wemodel the interaction between the genotype of a B-cell receptor and its secreted antibody (blue) with a
viral genotype (red) in both variable and conserved regions of the viral genome. The black and white circles indicate the state of the
interacting loci with values ±1. Loci in the conserved region of the virus are fixed at +1. The length of the arrows indicate the
contribution of each locus to the binding affinity, κi, which is a measure of the accessibility of an antibody lineage to viral epitopes. The
blue arrows indicate the interactions that increase binding affinity (i.e., loci with same signs in antibody and viral genotype), whereas
red arrows indicate interaction that decrease the affinity (i.e., loci with opposite signs in antibody and viral genotype.)

doi:10.1371/journal.pgen.1006171.g001
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31]. Past models typically described only a few viral types [27, 28], and did not account for the
vast genetic diversity and turnover seen in infecting populations. A recent study by Luo & Per-
elson [30] described diverse viral and antibody populations, relying primarily on numerical
simulations.

In this paper, we take a phenomenological approach to model the within-host coevolution
of diverse populations of B-cells and chronic viruses. We focus on the chronic infection phase,
where the immune response is dominated by HIV-specific antibody-mediated mechanisms,
which follow the strong response by the cytotoxic T-lymphocytes (i.e., CD8+ killers T-cells),
around 50 days after infection [32]. During the chronic phase, population sizes of viruses and
lymphocytes are relatively constant but their genetic compositions undergo rapid turnover
[33]. We characterize the interacting sites of B-cell receptors and viruses as mutable binary
strings, with binding affinity, and therefore selection, defined by matching bits. We keep track
of both variable regions in the viral genome and conserved regions, asking specifically when B-
cell receptors will evolve to bind to the conserved region, i.e., to develop broad neutralization
capacity. The main simplification that makes our analysis tractable is that we focus on the evo-
lution of a shared interaction phenotype, namely the distribution of binding affinities between
viral and receptor populations. Specifically, we model the effects of mutations, selection and
reproductive stochasticity on the distribution of binding affinities between the two populations,
which is similar to the approach of quantitative genetics [34]. Projecting from the high-dimen-
sional space of genotypes to lower dimension of binding phenotypes allows for a predictive and
analytical description of the coevolutionary process [35], whilst retaining the salient informa-
tion about the quantities of greatest biological and therapeutic interest.

Using this modeling approach we show that the evolution of the binding affinity does not
depend on details of any single-locus contribution, but is an emerging property of all constitu-
tive loci. Even though the coevolution of antibodies and viruses is perpetually out of equilib-
rium, we develop a framework to quantify the amount of adaptation in each of the two
populations by defining fitness and transfer flux, which partition changes in mean fitness. We
discuss how to measure the fitness and transfer flux from time-shifted experiments, where
viruses are competed against past and future antibodies, and we show how such measurements
provide a signature of coevolution. We use these analytical results to interpret empirical mea-
surements of time-shifted neutralization assays from two HIV-infected patients [11], and we
infer two qualitatively different regimes of viral-antibody coevolution. We discuss the conse-
quences of competition between clonal B-cell lineages within and between germinal centers. In
particular, we derive analytic expressions for the fixation probability of a newly arisen, broadly
neutralizing antibody lineage. We find that BnAbs have an elevated chance of fixation in the
presence of a diverse viral population, whereas specific neutralizing antibody lineages do not.
We discuss the implications of these results for the design of preventive vaccines that elicit
BnAbs against HIV.

Results

Interaction between antibodies and viruses
B-cell receptors undergo mutation and selection in germinal centers, whereas viruses are pri-
marily affected by the receptors secreted into the blood, known as antibodies. Our model does
not distinguish between antibodies and B-cells, so we will use the terms interchangeably. To
represent genetically diverse populations we define genotypes for antibodies and viruses as
binary sequences of ±1, where mutations change the sign of individual loci. Mutations in
some regions of a viral genome are highly deleterious, e.g. at sites that allow the virus to bind
target cell receptors, including CD4-binding sites for HIV. To capture this property we
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explicitly model a conserved region of the viral genome that does not tolerate mutations, so
that its bits are always set to +1. We let viruses have variable bits at positions i = 1 . . . ℓ, and

conserved bits at positions i ¼ ‘þ 1; . . . ; ‘þ ‘̂; while antibodies have variable bits at posi-

tions i ¼ 1 . . . ‘þ ‘̂; see Fig 1B.
Naive B-cells generate diversity by gene rearrangements (VDJ recombination), which differ-

entiates their ability to bind to different epitopes of the virus; and then B-cells diversify further
by somatic hypermutation and selection during affinity maturation. We call the set of B-cells
that originate from a common germline sequence a clonal lineage. A lineage with access to con-
served regions of the virus can effectively neutralize more viral genotypes, since no escape
mutation can counteract this kind of neutralization.

The binding affinity between antibody and virus determines the likelihood of a given anti-
gen neutralization by an antibody, and therefore it is the key molecular phenotype that deter-
mines selection on both immune and viral populations. We model the binding affinity as a
weighted dot product over all loci, which for antibody Aα chosen from the genotype space

a 2 1 . . . 2‘þ‘̂ and virus Vγ with γ 2 1 . . . 2ℓ has binding affinity

EC
totðAa;V gÞ ¼

X‘

i¼1
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a
i V
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i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
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a

ð1Þ

where, Aa
i ¼ �1 denotes the ith locus of the α antibody genotype, and V g

i the i
th locus of the γ

viral genotype. Matching bits at interacting positions enhance binding affinity between an
antibody and a virus; see Fig 1B. Similar models have been used to describe B-cell maturation
in germinal centers [27], and T-cell selection based on the capability to bind external antigens
and avoid self proteins [36, 37]. The conserved region of the virus with Vi = 1 is located at

positions i ¼ ‘þ 1; . . . ; ‘þ ‘̂ for all viral sequences. Consequently, the total binding affinity
is decomposed into the interaction with the variable region of the virus, EC

a g and with the con-

served region of the virus, ÊC
a . We call the lineage-specific binding constants fkC

i � 0g and
fk̂C

i � 0g the accessibilities, because they characterize the intrinsic sensitivity of an antibody
lineage to individual sites in viral epitopes. We begin by analyzing the evolution of a single
antibody lineage, and suppress the C notation for brevity. Coevolution with multiple antibody
lineages is discussed in a later section.

Both antibody and viral populations are highly polymorphic, and therefore contain many
unique genotypes. While the binding affinity between a virus Vγ and an antibody Aα is con-
stant, given by eq (1), the frequencies of the antibody and viral genotypes, xα and yγ, and all
quantities derived from them, change over time as the two populations coevolve. To character-
ize the distribution of binding affinities we define the genotype-specific binding affinities in
each population, which are marginalized quantities over the opposing population: Eα � = ∑γ Eαγ
yγ for the antibody Aα, and E.γ = ∑α Eαγ x

α for the virus Vγ. We will describe the time evolution

of the joint distribution of Eα �, Êa, and E� γ, by considering three of its moments: (i) the mean
binding affinity, which is the same for both populations E ¼ P

aEa �x
a ¼ P

gE� gy
g, (ii) the

diversity of binding affinity in the antibodies,MA;2 ¼
P

aðEa � � EÞ2xa and (iii) the diversity of
binding affinities in the viruses,MV;2 ¼

P
gðE� g � EÞ2yg. Analogous statistics of binding affini-

ties can be defined for the conserved region of the virus, which we denote by Ê for the mean

Host-Pathogen Coevolution and the Emergence of Broadly Neutralizing Antibodies in Chronic Infections

PLOS Genetics | DOI:10.1371/journal.pgen.1006171 July 21, 2016 5 / 23



interaction, and M̂A;2 for the diversity across antibodies. The diversity of viral interactions in

the conserved region must always equal zero, M̂V ;2 ¼ 0.

Coevolution of an antibody lineage and viruses
We first characterize the affinity maturation process of a single clonal antibody lineage
coevolving with a viral population, which includes hypermutation, selection, and stochasticity
due to population size in germinal centers, i.e., genetic drift.

Genetic drift and evolutionary time-scales. Stochasticity in reproductive success, known
as genetic drift, is an important factor that depends on population size, and therefore we
model genetic drift by keeping populations at finite size Na for antibodies, and Nv for viruses.
Although the population of B-cells can reach large numbers within an individual host, signifi-
cant bottlenecks occur in germinal centers, where there may be on the order of*103−104 B-
cells [7]. For HIV, estimates for intra-patient viral divergence suggests an effective population
size of about*102−103, which is much smaller than the number of infected cells within a
patient*107−109 [38].

Fluctuations by genetic drift define an important time-scale in the evolution of a polymor-
phic population: the neutral coalescence time is the characteristic time that two randomly cho-
sen neutral alleles in the population coalesce to their most recent common ancestor, and is
equal to N generations. Neutral coalescence time is estimated by phylogenetic analysis, and is
often interpreted as an effective population size, which may be different from the census popu-
lation size. Coalescence time can be mapped onto real units of time (e.g., days) if sequences are
collected with sufficient time resolution. Without loss of generality, we assume that generation
times in antibodies and viruses are equal, but we distinguish between the neutral coalescence
time of antibodies and viruses by using distinct values for their population sizes, i.e., Na in anti-
bodies and Nv in viruses.

Mutations. In the bi-allelic model outlined in Fig 1B, a mutation changes the sign of an
antibody site, i.e., Aa

i ! �Aa
i , affecting binding affinity in proportion to the lineage’s intrinsic

accessibility at that site, κi. Therefore, a mutation in an antibody at position i changes Eα. by
diEa : ¼ �2 kiA

a
i

P
gV

g
i y

g. Likewise, a mutation at position j of a virus V g
j ! �V g

j affects bind-

ing affinity in proportion to κj. We assume constant mutation rates in the variable regions of
the viruses and antibodies: μv and μa per site per generation.

Empirical estimates of per-generation mutation rates for viruses μv or hypermutation
rates of BCR sequences μa are extremely imprecise, and so we rescale mutation rates by neu-
tral coalescence times. To do this, we consider measurements of standing neutral sequence
diversity, estimated from genetic variation in, e.g., four-fold synonymous sites of protein
sequences at each position. Neutral sequence diversity for the antibody variable region,
which spans a couple of hundred base pairs, is about θa = Na μa = 0.05 − 0.1 [2]. Nucleotide
diversity of HIV increases over time within a patient, and ranges between θv = Nv μv = 10−3

− 10−2 in the env protein of HIV-1 patients, with a length of about a thousand base pairs [39].
Interestingly, the total diversity of the variable region in BCRs is comparable to the diversity
of its main target, the env protein, in HIV. Both populations have on the order of 1–10 muta-
tions per genotype per generation, which we use as a guideline for parameterizing simula-
tions of our model.

Selection. Frequencies of genotypes change according to their relative growth rate, or fit-
ness. The change in the frequency of antibody Aα with fitness fAa is Dxa ¼ ðfAa � FAÞxa per
generation, where we define (malthusian) fitness as proportional to the growth rate, and

FA ¼
X

a
fAaxa denotes the mean fitness of the antibody population (see Section A of
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S1 Text). Likewise, the change in frequency of virus Vγ due to selection per generation is,
Dyg ¼ ðfVg � FVÞyg, where FV denotes the mean fitness in the viral population.

During affinity maturation in a germinal center, a B-cell’s growth rate depends on its ability
to bind to the limited amounts of antigen, and to solicit survival signals from helper T-cells [8].
At the same time, viruses are neutralized by antibodies that have high binding affinity. The
simplest functional form that approximates this process, and for which we can provide analyti-
cal insight, is linear with respect to the binding affinity,

fAa ¼ SaðEa � þ ÊaÞ ð2Þ

fVg ¼ �SvðE� g þ Ê �Þ ð3Þ

for antibody Aα and virus Vγ. The selection coefficient Sa > 0 quantifies the strength of selec-
tion on the binding affinity of antibodies. The value of Sa may decrease in late stages of a long-
term HIV infection, as the host’s T-cell count decays [31], but we do not model this behavior.
The viral selection coefficient Sv> 0 represents immune pressure impeding the growth of the
virus. The contribution of the conserved region to the fitness of the virus is independent of the
viral genotype in eq (3), and it does not affect the relative growth rates of the viral strains.

The number of sites and the magnitude of their accessibilities affect the overall strength of
selection on binding affinity. Therefore, it is useful to absorb the intrinsic effects of the pheno-
type magnitude into the selection strength, and use rescaled values that are comparable across
lineages of antibodies, and across experiments. We therefore rescale quantities related to

the binding affinity by the total scale of the phenotypes E2
0 ¼

P
ik

2
i and Ê

2
0 ¼

P
ik̂

2
i , such that

Eαγ ! Eαγ/E0 and Êag ! Êag=Ê0, resulting in rescaled mean binding affinities ε and ε̂, and

diversitiesmA,2, m̂A;2 andmV,2 in variable and conserved regions of both populations. Accord-

ingly, we define rescaled selection coefficients sa = Na Sa E0, ŝa ¼ NaSaÊ0, sv = Nv Sv E0 and

ŝv ¼ NvSvÊ0, which describe the total strength of selection on binding affinity; see Section B.1
of S1 Text for details.

Many aspects of affinity maturation are not well known, and so it is worth considering
other forms of selection. In Section B.5 of S1 Text we describe fitness as a non-linear function
of the binding affinity. In particular, we consider fitness that depends on the antibody activa-
tion probability, which is a sigmoid function of the strongest binding affinity among a finite
number of interactions with antigens. The linear fitness function in eq (2) is a limiting case of
this more general fitness model. While most of our analytical results are based on the assump-
tion of linear fitness function, we also discuss how to quantify adaptation for arbitrary fitness
models, and we numerically study the effect of nonlinearity on the rate of antibody adaptation
during affinity maturation.

Evolution of the mean binding affinity
We focus initially on understanding the (rescaled) mean binding affinity ε, ε̂ between a clonal
antibody lineage and the viral population, since this is a proxy for the overall neutralization
ability that is commonly monitored during an infection. Combining genetic drift with muta-
tion and selection, and assuming a continuous-time and continuous-frequency process, results
in a stochastic dynamical equation for the evolution of rescaled mean binding affinity in the
variable region,

d
dt

ε ¼ �2 ya þ yvðNA=NvÞ½ �εþ samA;2 � svmV;2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mA;2 þ

Na

Nv

mV ;2

s
wε ð4Þ
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and in the conserved region,

d
dt

ε̂ ¼ �2yaε̂ þ sam̂A;2 þ
ffiffiffiffiffiffiffiffiffi
m̂A;2

q
wε̂ ð5Þ

where χε and wε̂ are standard Gaussian noise terms, and time τ is measured in units of the anti-
body coalescence time Na. Our analysis neglects the correlation between the variable and the
conserved regions of the virus, which is due to physical linkage of the segments. In Section B.4
of S1 Text we show that a difference in evolutionary time-scales between these regions reduces
the magnitude of this correlation. As eqs (4 and 5) reflect, mutations drive the mean affinity
towards the neutral value, zero, whereas selection pushes it towards positive or negative values.
The efficacy of selection on binding affinity is proportional to the binding diversitymA,2,mV,2

in each of the populations. If a population harbors a large diversity of binding affinities then it
has more potential for adaptation from the favorable tail of the distribution, which contains
the most fit individuals in each generation [40, 41]. It follows that selection on viruses does not
affect the evolution of their conserved region, where the viral diversity of binding is always
zero, m̂V ;2 ¼ 0. In Section B.3 of S1 Text and S2 Fig we study the evolution of the higher central

moments in detail.
The dynamics in eqs (4 and 5) simplify in the regime where selection on individual loci is

weak (NSκ< 1), but the additive effects of selection on the total binding affinity are substantial
(1≲ s� θ−1). This evolutionary regime is, in particular, relevant for HIV escape from the
humoral neutralizing antibody response [39], that follows the initial strong response to cyto-
toxic T-lymphocytes [42]. In this parameter regime, the binding diversities are fast variables
compared to the mean affinity, and can be approximated by their stationary ensemble-aver-
aged values (S3 Fig), which depend only weakly on the strength of selection even for substantial
selection s* 1: hmA,2i ’ 4θa and hmV,2i ’ 4θv. Higher-order corrections (Section B.3 of S1
Text and S2 Fig) show that strong selection reduces binding diversity. The ensemble-averaged
mean binding affinities relax exponentially towards their stationary values,

hεi ’ 2ðsaya � svyvðNa=NvÞÞ
ya þ yvðNa=NvÞ

� 2Dsav ð6Þ

hε̂i ’ 2 ŝa ð7Þ

where Δsav is an effective selection coefficient for binding affinity in the variable region, com-
bining the effect of selection from both populations and accounting for their distinct genetic
diversities. The stationary mean binding affinity quantifies the balance of mutation and
selection acting on both populations. A strong selection difference between two populations
Δsav 	 1 results in selective sweeps for genotypes with extreme values of binding affinity in
each population, and hence, reduces the binding diversity. We validated our analytical solution
for stationary mean binding, with corrections due to selection on binding diversity (Section B.3
of S1 Text), by comparison with full, genotype-based Wright-Fisher simulations across a broad
range of selection strengths (Materials and Methods, S1 and S2 Figs).

The weak dependence of binding diversity on selection allows for an experimental estima-
tion of the stationary rescaled mean binding affinity, using measurements of the binding
affinity distribution and neutral sequence diversities. The rescaled binding affinity can be

approximated as: ε 
 hEi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hMA;2i=4ya

q
and ε̂ 
 hÊ i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM̂A;2i=4ya

q
. Fig 2 demonstrates the

utility of this approximation, and it shows that heterogeneous binding accessibilities, κi, drawn
from several different distributions, do not affect stationary mean binding. Only the total mag-
nitude of the accessibilities is relevant, as it determines the effect of selection on the whole
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phenotype. Although we have formulated a high-dimensional stochastic model of antibody-
antigen coevolution in polymorphic populations, we can nonetheless understand the long-
term binding affinities, which are commonly measured in patients, in terms of only a few key
parameters.

In Section B.5 of S1 Text we numerically study non-linear fitness landscapes, and their effect
on the stationary mean binding and rate of adaptation (S4 Fig). While the results differ quanti-
tatively, we can qualitatively understand how the stationary mean binding affinity depends on
the form of non-linearity.

Fitness and transfer flux
The antagonistic coevolution of antibodies and viruses is a non-equilibrium process, with each
population constantly adapting to a dynamic environment, namely, the state of the opposing
population. As a result, any time-independent quantity, such as the stationary mean binding
affinity studied above, is itself not informative for the extent of coevolution that is occurring.
For example, a stationary mean binding affinity of zero (equivalently Δsav = 0 in eq (6)) can
indicate either neutral evolution or rapid coevolution induced by equally strong selection in
antibody and viral populations.

To quantify the amount of adaptation and extent of interaction in two coevolving populations
we will partition the change in mean fitness of each population into two components. We mea-
sure adaptation by the fitness flux [43–45], which generically quantifies adaptation of a population

Fig 2. Effect of selection on immune-virus binding affinity. The stationary mean binding affinity, rescaled by antibody

binding diversity (E=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MA;2=4ya

q
), on the y-axis, is well approximated by the scaled selection difference between antibody

and viral populations, Δsav, as predicted by our analysis (eq (6)). Points show results of Wright-Fisher simulations, and the
solid line has slope 1. Note that the mean binding affinity is insensitive to the details of heterogeneous binding
accessibilities, κi, associated with an antibody lineage. Accessibilities κi are drawn from several different Γ-distributions,
shown in legend. Small deviations from the predicted mean binding are caused by higher moments of binding affinities,
which can also be understood analytically (S1 Fig). Simulation parameters are detailed in the Materials and Methods.

doi:10.1371/journal.pgen.1006171.g002
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in response to a changing environment (in this case the opposing population); see schematic
Fig 3. For our model, the fitness flux of the antibody population quantifies the effect of changing

genotype frequencies on mean fitness, and is defined as �AðtÞ ¼
X

a
@xaFAðtÞdxaðtÞ=dt, where

FA denotes the mean fitness of antibodies, and the derivative dxα(t)/dtmeasures the change in fre-
quency of the antibody Aα. The forces of mutation, drift, and selection all contribute to fitness
flux, however the portion of fitness flux due to selection equals the population variance of fitness,
in accordance with Fisher’s theorem [40]. The second quantity we study, which we term the
transfer flux, measures the amount of interaction between the two populations by quantifying the
change in mean fitness due to the response of the opposing population (schematic Fig 3). The

transfer flux from viruses to antibodies is defined as T V!AðtÞ ¼
X

g
@ygFAðtÞdygðtÞ=dt. Analo-

gous measures of adaptation and interaction can be defined for the viral population (see Section
C of S1 Text).

The fitness flux and transfer flux represent rates of adaptation and interaction, and they are
typically time dependent, except in the stationary state. The total amount of adaptation and
interaction during non-stationary evolution, where the fluxes change over time, can be

measured by the cumulative fluxes over a period of time: FAðtaÞ ¼ Na

R t

t0¼0
�Aðt0Þ dt0 and

TV!AðtaÞ ¼ Na

R t

t0¼0
T V!Aðt0Þ dt0, where time τa = t/Na is measured in units of neutral coales-

cence time of antibodies Na. In the stationary state, the ensemble-averaged cumulative fluxes
grow linearly with time. For coevolution on the fitness landscapes given by eqs (2 and 3), the
ensemble-averaged, stationary cumulative fitness flux and transfer flux in antibodies are

hFAðtaÞi ¼ �2yasahεi þ s2ahmA;2i
� �

ta ð8Þ

hTV!AðtaÞi ¼ �2yvsahεi � sasvhmV ;2i
� �ðNa=NvÞta ð9Þ

Note that the factor (Na/Nv)τa in eq (9), which is a rescaling of time in units of viral neutral coa-
lescence time τv = t/Nv, emphasizes the distinction between the evolutionary time scales of anti-
bodies and viruses. The first terms on the right hand side of eqs (8 and 9) represent the fitness
changes due to mutation, the second terms are due to selection, and the effects of genetic drift
are zero in the ensemble average for our linear fitness landscape. Notably, the flux due to the
conserved region of the virus is zero in stationarity, as is the case for evolution in a static fitness
landscape (i.e., under equilibrium conditions). In the stationary state, the cumulative fitness
and transfer fluxes sum up to zero, hFA(τa)i + hTV!A(τa)i = 0.

Fitness flux and transfer flux are generic quantities that are independent of the details of our
model, and so they provide a natural way to compare the rate of adaptation in different evolu-
tionary models or in different experiments. In the regime of strong selection sa, sv ≳ 1, non-
linearity of the fitness function results in a more narrow distribution of fitness values in the
antibody population, and hence, reduces the rate of adaptation and fitness flux; see S4 Fig. In
the following section we show how to use fitness and transfer flux to detect signatures of signif-
icant antibody-antigen coevolution.

Signature of coevolution and inferences from time-shifted experiments
Measuring interactions between antibodies and viruses isolated from different times provides
a powerful way to identify coevolution. These “time-shifted” neutralization measurements in
HIV patients have shown that viruses are more resistant to past antibodies, from which they
have been selected to escape, and more susceptible to antibodies from the future, due to selec-
tion and affinity maturation of B-cells [11–13].

Host-Pathogen Coevolution and the Emergence of Broadly Neutralizing Antibodies in Chronic Infections

PLOS Genetics | DOI:10.1371/journal.pgen.1006171 July 21, 2016 10 / 23



We can predict the form of time-shifted binding assays under our model; see Section D of S1
Text for details. The rescaled time-shifted binding affinity between viruses at time t and antibod-

ies at time t + τ is given by ετ(t) = ∑α,γ Eαγ y
γ(t)xα(t + τ)/E0 and ε̂tðtÞ ¼

P
aÊax

aðt þ tÞ=Ê0 for
the variable and the conserved region, respectively. The corresponding viral mean fitness at
time t against the antibody population at time t + τ is NvFV;tðtÞ ¼ �svðεtðtÞ þ ε̂tðtÞÞ. The
slope of the time-shifted viral fitness at the time where the two populations co-occur (i.e., τ = 0),
approaching from negative τ, i.e., from the past, measures the amount of adaptation of the viral
population in response to the state of the antibody population, and it is precisely equal to the fit-
ness flux of viruses: @τ FV;τ(t − τ)|τ = 0− = ϕV(t). The slope approaching from positive time-shifts,
i.e., from the future, measures the change in the mean fitness of the viral population due to
adaptation of the antibody population, and it is precisely equal to the transfer flux from antibod-
ies to viruses @tFV;tðtÞjt¼0þ ¼ T A!VðtÞ. Similarly, we can define time-shifted fitness with anti-

bodies as the focal population; see Section D of S1 Text. In stationarity, the sum of fitness flux
and transfer flux is zero on average, and so the slopes from either side of τ = 0 are equal, as in
Fig 4 and S5 Fig. Note that these relationships between time-shifted fitness and the flux variables
hold in general, beyond the specific case of a linear fitness landscape. In a non-stationary state,
the fitness flux and transfer flux are not balanced, and so hFV;τ(t)i has a discontinuous derivative
at τ = 0 (S6 Fig). Therefore, observation of such a discontinuity provides a way to identify statio-
narity versus transient dynamics, given sufficient replicated experiments.

Whether in stationarity or not, the signature of out-of-equilibrium evolution is a positive fit-
ness flux and negative transfer flux. For time-shifted fitness, this means that for short time
shifts, where dynamics are dominated by selection, viruses have a higher fitness against

Fig 3. Fitness and transfer flux in antibody-viral coevolution. The schematic diagram shows adaptation of antibody (blue
diamond) and viral (red diamond) populations on their respective fitness landscapes, which depend on the common binding
phenotype shown on the x-axis (i.e., the mean binding affinity). During one step of antibody adaptation (left), mean binding
affinity increases (horizontal blue arrow) to enhance the fitness of the antibody population, with a rate equal to the antibody
fitness flux ϕA (upward blue arrow). In the regime of strong selection, the fitness flux is proportional to the variance of fitness in
the population; see eq (8). Adaptation of antibodies reduces the mean fitness in the viral population, with a rate proportional to
the transfer flux from antibodies to viruses T A!V (downward red/blue arrow). On the other hand, viral adaptation (right) reduces
the binding affinity and affects the fitness of both populations, with rates proportional to the viral fitness flux ϕV (upward red
arrow) and the transfer flux from viruses to antibodies T V!A (downward blue/red arrow); see eq (9). Cumulative fitness flux (the
sum of upward arrows) and cumulate transfer flux (the sum of downward arrows) over an evolutionary period quantify the
amount of adaptation and interaction in the two antagonistic populations.

doi:10.1371/journal.pgen.1006171.g003
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Fig 4. Time-shifted binding assays between antigens and antibodies provide a definitive signature of viral-immune coevolution.
Viruses perform best against antibodies from the past and perform worst against antibodies from the future due to the adaptation
of antibodies. (A) Stationary rescaled binding affinity between viruses from time t and antibodies from time t + τ, averaged over all t:
ετ = h∑α,γ Eαγ y

γ(t)xα(t + τ)it/E0, and (B) time-shifted mean fitness of virusesNv FV;τ = −sv ετ, are shown for three regimes of coevolutionary
dynamics: strong adaptation of both populations s2aya � s2vyv, with sa = sv = 2 (blue), stronger adaptation of viruses s2vyv 	 s2aya with sv = 2,
sa = 0 (red), and stronger adaptation of antibodies s2aya 	 s2vyv with sv = 0, sa = 2 (green). Wright-Fisher simulations (solid lines) are
compared to the analytical predictions from eqs. (S102, S103) in S1 Text for each regime (dashed lines). The “S”-shape curve in the blue
regime is a signature of two antagonistically coevolving populations sv θv * sa θa. For large time-shifts, binding relaxes to its neutral value,
zero, as mutations randomize genotypes. In the absence of selection in one population, the time-shifted binding affinity reflects adaptation
of one population against stochastic variation in the other due to mutation and genetic drift. The slope of time-shifted fitness at lag τ = 0 is
the viral population’s fitness flux (slope towards the past) and the transfer flux from the opposing population (slope towards the future),
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antibodies from the past, and have lower fitness against antibodies from the future. This is true
even when one population is evolving neutrally and the other has substantial selection, as
shown in Fig 4A. For long time shifts, the sequences are randomized by mutations and the fit-
ness decays exponentially to the neutral value. When selection and mutation are substantial on
both sides the time-shifted fitness curve has a characteristic “S”shape—a signature of coevolu-
tion, whose inflected form can be understood in terms of the fitness and transfer fluxes. In Sec-
tion D of S1 Text we analytically derive the functional form of the time-shifted binding affinity
and fitness dependent on the evolutionary parameters. Fig 4A and 4B and S5 Fig show good
agreement between Wright-Fisher simulations and our analytical predictions given by eqs.
(S102, S103) in S1 Text for the stationary time-shifted binding affinity and viral fitness.

We can use our analytical results to interpret empirical measurements of time-shifted viral
neutralization by a patient’s circulating antibodies. We analyzed data from Richman et al. [11]
on two HIV-infected patients. We approximated the fitness of the virus against a sampled
serum (antibodies) as the logarithm of the neutralization titer FV ’ −log titer; here titer is the
reciprocal of antibody dilution where inhibition reaches 50% (IC50) [46]. A signature of coevo-
lution can sometimes be obscured when the fitnesses of antibodies and viruses also depend on
time-dependent intrinsic and environmental factors, such as drug treatments [46]. Therefore,
we used fitness of a neutralization-sensitive virus (NL43) as a control measurement to account
for the increasing antibody response during infection, shown in S7 Fig. The relative time-
shifted viral fitness in Fig 4C for the two HIV patients (TN-1 and TN-3), match well with the
fits of our analytical equations (see Materials and Methods and Section F of S1 Text). The
inferred parameter values indicate two distinct regimes of coevolutionary dynamics in the two
patients. In patient TN-1, viruses and antibodies experience a comparable adaptive pressure, as
indicated by the “S-curve” in Fig 4C (blue line), whereas in patient TN-3, adaptation in viruses
is much stronger than in antibodies, resulting in an imbalanced shape of the time-shifted fit-
ness curve in Fig 4C (red line). We describe the inference procedure and report all inferred
parameters in Section F of S1 Text. The resolution of the data [11] allows only for a qualitative
interpretation of coevolutionary regimes. A more quantitative analysis can be achieved through
longer monitoring of a patient, detailed information on the inhibition of viral replication at
various levels of antibody dilution, and directed neutralization assays against HIV-specific anti-
body lineages.

Competition between multiple antibody lineages
B-cells in the adaptive immune system are associated with clonal lineages that originate from
distinct ancestral naive cells, generated by germline rearrangements (VDJ recombination) and
junctional diversification [1]. Multiple lineages may be stimulated within a germinal center,
and also circulate to other germinal centers [8]. Lineages compete for activation agents (e.g.,
helper T-cells) and interaction with a finite number of presented antigens [8]. We extend our
theoretical framework to study how multiple lineages compete with each other and coevolve

which are equal to each other in the stationary state. The slope of the dotted lines indicate the predicted fitness flux and transfer flux (eqs.
(8 and 9)). Time-shifted fitness shown here does not include binding to the conserved region since that value is constant for all time-shifts
in stationarity (see S6 Fig for non-stationary state). Simulation parameters are given in the Materials and Methods. (C) Empirical time-
shifted fitness measurements of HIV based on a neutralization titer (IC50) [11], averaged over all time points with equal time-shift τ. Circles
show averaged fitness ± 1 standard error, and crosses show fitness at time-shifts with only a single data point. Solid lines show analytical
fits of our model to the data (see Materials and Methods and Section F of S1 Text). In patient TN-1, viruses and antibodies experience a
comparable adaptive pressure, with a similar time-shift pattern to the blue “S-curve” in panel (B). In patient TN-3, however, adaptation in
viruses is much stronger than in antibodies, resulting in an imbalanced shape of the time-shifted fitness curve, similar to the red curve in
panel (B).

doi:10.1371/journal.pgen.1006171.g004
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with viruses. This generalization allows us to show that lineages with higher overall binding
ability, higher fitness flux, and lower (absolute) transfer flux have a better chance of surviving.
In particular, we show that an antibody repertoire fighting against a highly diversified viral
population, e.g., during late stages of HIV infection, favors elicitation of broadly neutralizing
antibodies compared to normal antibodies.

The binding preference of a clonal antibody lineage C to the viral sequence is determined by
its site-specific accessibilities fkC

i ; k̂
C
i g, defined in Fig 1B. The distribution of site-specific acces-

sibilities over different antibody lineages PCðfkC
i ; k̂

C
i gÞ characterizes the ability of an antibody

repertoire to respond to a specific virus. Without continual introduction of new lineages, one
lineage will ultimately dominate and the rest will go extinct within the coalescence time-scale
of antibodies, Na (Fig 5A). In reality, constant turn-over of lineages results in a highly diverse
B-cell response, with multiple lineages acting simultaneously against an infection [47].

Stochastic effects are significant when the size of a lineage is small, so an important question
is to find the probability that a low-frequency antibody lineage reaches an appreciable size
and fixes in the population. We denote the frequency of an antibody lineage with size NC

a by
rC ¼ NC

a =Na. The growth rate of a given lineage C depends on its relative fitness FACcompared
to the rest of the population,

d
dt

rC ¼ ðFAC � FAÞrC þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rCð1� rCÞ

Na

s
w
C

ð10Þ

where F
A
¼ P

CFACrC is the average fitness of the entire antibody population, and w
C
is a stan-

dard Gaussian noise term. For the linear fitness landscape from eq (2), the mean fitness of line-

age C is FAC ¼ SaðEC þ Ê CÞ. The probability of fixation of lineage C equals the asymptotic (i.e.,
long time) value of the ensemble-averaged lineage frequency, PfixðCÞ ¼ lim t!1hrCðtÞi.

Similar to evolution of a single lineage, the dynamics of a focal lineage are defined by an infi-
nite hierarchy of moment equations for the fitness distribution. In the regime of substantial
selection, and by neglecting terms due to mutation, a suitable truncation of the moment hierar-
chy allows us to estimate the long-time limit of the lineage frequency, and hence, its fixation
probability (see Section E of S1 Text). For an arbitrary fitness function, fixation probability can
be expressed in terms of the ensemble-averaged relative mean fitness, fitness flux and transfer
flux at the time of introduction of the focal lineage,

PfixðCÞ=P0fix
’ 1þ NaðFAC ð0Þ � FAð0ÞÞ

D E
þ N2

a

3
�AC ð0Þ � �Að0Þh i � NaNv T V!AC ð0Þj j � T V!Að0Þj jh �i ð11Þ

where P0
fix
is the fixation probability of the lineage in neutrality, which equals its initial fre-

quency at the time of introduction, P0fix
¼ rCð0Þ. The first order term that determines the

excess probability for fixation of a lineage is the difference between its mean fitness and the
average fitness of the whole population. Thus, a lineage with higher relative mean fitness at the
time of introduction, e.g., due to its better accessibility to either the variable or conserved
region, will have a higher chance of fixation. Moreover, lineages with higher rate of adaptation,
i.e., fitness flux �AC ðt ¼ 0Þ, and lower (absolute) transfer flux from viruses jT V!AC ðt ¼ 0Þj
tend to dominate the population.

For evolution in the linear fitness landscape, we can calculate a more explicit expansion of
the fixation probability that includes mutation effects. In this case, the fixation probability of
a focal lineage can be expressed in terms of the experimentally observable lineage-specific
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Fig 5. Competition between antibody lineages, and fixation of broadly neutralizing antibodies. (A) Simulation of competition between
20 clonal antibody lineages against a viral population. Lineages with higher mean fitness, higher fitness flux, and lower transfer flux tend to
dominate the antibody repertoire. Each color represents a distinct antibody lineage, however there is also diversity within each lineage from
somatic hypermutations. The reduction in the number of circulating lineages resembles the reduction in the number of active B-cell clones
within the life-time of a germinal center [8]. Lineages are initialized as 500 random sequences with random accessibilities kC ’s, unique to
each lineage, drawn from an exponential distribution with rate parameter 3. Total population sizes are Na = Nv = 104. Other simulation
parameters are as specified in the Materials and Methods. (B) Analytical estimates of the fixation probability Pfix of a new antibody lineage,
based on the state of the populations at the time of its introduction, compared to Wright-Fisher simulations (points) with two competing
antibody lineages. A novel BnAb (blue) or non-BnAb (red) lineage is introduced at frequency 10% into a non-BnAb resident population
(simulation procedures described in the Materials and Methods). BnAb lineages have a higher chance of fixing, compared to non-BnAb
antibodies, when the viral population is diverse, whereas both types of Abs have similar chances in the limit of low viral diversity. The solid
line is the analytical estimate for Pfix given by eq. (S140) in S1 Text, which is valid when the rate of adaptation is similar in antibodies and
viruses. The dashed line is the analytical estimate for Pfix using the approximation in eq. (S141) in S1 Text, which is suitable when there is a
strong imbalance between the two populations, as is the case for invasion of a BnAb with strong antibody selection sa > 1 or against a viral
population with low diversity. In the absence of selection (neutral regime), the fixation probability of an invading lineage is equal to its initial
frequency of 10%. Panels show different strengths of antibody selection sa = 0.5, 0.75, 1,2 against a common viral selection strength sv = 1.
Viral diversity is influenced mostly by the viral nucleotide diversity θv, which ranges from 0.002 to 0.1. Other simulation parameters are
specified in the Materials and Methods.

doi:10.1371/journal.pgen.1006171.g005
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moments of the binding affinity distribution, instead of the moments of the fitness distribution
(see Section E of S1 Text).

Emergence of broadly neutralizing antibodies
With our multi-lineage model, we can understand the conditions for emergence of broadly
neutralizing antibodies (BnAbs) in an antibody repertoire. Similar to any other lineage, the
progenitor of a BnAb faces competition with other resident antibody lineages that may be
dominating the population. The dominant term in the fixation probability is the relative fitness
difference of the focal lineage to the total population at the time of introduction. Lineages may
reach different fitnesses because they differ in their scale of interaction with the viruses, EC

0 in

the variable region and ÊC
0 in the conserved region; see Section E of S1 Text for details. Lineages

which bind primarily to the conserved region, i.e., ÊC
0 	 EC

0 , are not vulnerable to viral escape
mutations that reduce their binding affinity. Such BnAbs may be able to reach higher fitnesses
compared to normal antibodies which bind to the variable region with a comparable scale of
interaction. The difference in the mean fitness of the two lineages becomes even stronger, when
viruses are more diverse (i.e., highMV,2), so that they can strongly compromise the affinity of
the lineage that binds to the variable region; see eq (11).

If the invading lineage has the same fitness as the resident lineage, then the second order
terms in eq (11) proportional to the fitness and transfer flux may be relevant. A BnAb lineage
that binds to the conserved region has a reduced transfer flux than a normal antibody lineage,
all else being equal. The difference in transfer flux of the two lineages depends on the viral
diversityMV,2, and becomes more favorable for BnAbs when the viral diversity is high. Overall,
a BnAb generating lineage has a higher advantage for fixation compared to normal antibodies,
when the repertoire is coevolving against a highly diversified viral population, e.g., during late
stages of HIV infection.

In Fig 5B we compare the fixation probability of a BnAb lineage, that binds only to the con-
served region, with a normal antibody lineage that binds only to the variable region. In both
cases we assume that the emerging lineage competes against a resident population of normal
antibodies. We compare our analytical predictions for fixation probability as a function of the
initial state of the antibody and viral populations given by eqs. (S140, S141) in S1 Text, with
Wright-Fisher simulations of coevolving populations (numerical procedures detailed in the
Materials and Methods). Increasing viral diversityM2,V increases the fixation of BnAbs, but
does not influence fixation of normal lineages. For low viral diversity, fixation of BnAbs is simi-
lar to normal Abs, and therefore they might arise and be outcompeted by other antibody
lineages.

Discussion
We have presented an analytical framework to describe coevolutionary dynamics between two
antagonistic populations based on molecular interactions between them. We have focused our
analysis on antibody-secreting B-cells and chronic infections, such as HIV. We identified effec-
tive parameters for selection on B-cells during hypermutation that enhance their binding and
neutralization efficacy, and conversely parameters for selection on viruses to escape antibody
binding. The resulting “red-queen” dynamics between antibodies and viruses produces a char-
acteristic signature of coevolution in our model, i.e., viruses are resistant to antibodies from the
past and are susceptible to antibodies from the future. We used our results to infer modes of
immune-viral coevolution based on time-shifted neutralization measurements in two HIV-
infected patients. Finally, we have shown that emergence and fixation of a given clonal anti-
body lineage is determined by competition between circulating antibody lineages, and that
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broadly neutralizing antibody lineages, in particular, are more likely to dominate in the context
of a diverse viral population.

Luo and Perelson [30] found that competition between lineages caused BnAbs to appear
late in their simulations. In addition, they found that multiple viral founder strains dilutes the
competition of BnAbs with specific antibodies, leading to higher chance of BnAb appearance.
The assumptions of their simulations differ in many ways from those of our model, and yet
their overall finding agrees with our analytical results: BnAbs fix more readily when there is a
large diversity of viral binding. In contrast to Luo and Perelson’s simulations which made
assumptions about the immunogenicity of BnAbs, our analytic results show explicitly how dif-
ferences in fitness of antibodies and the efficacy of viral escape affect competition between anti-
body lineages.

Our model is simple enough to clarify some fundamental concepts of antibody-antigen
dynamics. However, understanding more refined aspects of B-cell-virus coevolution will
require adding details specific to affinity maturation and viral reproduction, such as non-neu-
tralizing binding between antibodies and antigens [15, 48], epitope masking by antibodies [49]
and spatial structure of germinal centers [8]. Importantly, viral recombination [38, 39, 50] and
latent viral reservoirs [51] are also known to influence the evolution of HIV within a patient.
Similarly, the repertoire of the memory B-cells and T-cells, which effectively keep a record of
prior viral interactions, influence the response of the adaptive immune system against viruses
with antigenic similarity.

While our analysis has focused on coevolution of chronic viruses with the immune system,
our framework is general enough to apply to other systems, such as bacteria-phage coevolution.
Likewise, the notions of fitness and transfer flux as measures of adaptation are independent of
the underlying model. Bacteria-phage interactions have been studied by evolution experiments
[52, 53], and by time-shifted assays of fitness [54, 55], but established models of coevolution
typically describe only a small number of alleles with large selection effects [56]. In contrast,
our model offers a formalism for bacteria-phage coevolution where new genotypes are con-
stantly produced by mutation, consistent with experimental observations [54]. Similarly, our
formalism may be applied to study the evolution of seasonal influenza virus in response to the
“global” immune challenge, imposed by a collective immune landscape of all recently infected
or vaccinated individuals. Time-shifted binding assays of antibodies to influenza surface pro-
teins are already used to gauge the virulence and cross-reactivity of viruses [57]. Quantifying
the fitness flux and transfer flux, based on these assays, is therefore a principled way to measure
rates of immunologically important adaptation in these systems.

One central challenge in HIV vaccine research is to devise a means to stimulate a lineage pro-
ducing broadly neutralizing antibodies. Common characteristics of BnAbs, such as high levels
of somatic mutation or large insertions, often lead to their depletion by mechanisms of immune
tolerance control [58]. Therefore, one strategy to elicit these antibodies is to stimulate the pro-
genitors of their clonal lineage, which may be inferred by phylogenetic methods [59], and to
guide their affinity maturation process towards a broadly neutralizing state. Understanding the
underlying evolutionary process is necessary to make principled progress towards such strate-
gies, and this study represents a step in that direction. For example, our results suggest that a
vaccine based on a genetically diverse set of viral antigens is more likely to stimulate BnAbs.

Materials and Methods

Simulations
Simulations of the full genotype model (Wright-Fisher dynamics) were implemented as fol-

lows. Viral and antibody populations consist of genotypes as strings of ±1 with length ‘þ ‘̂.
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Binding interactions are calculated between all pairs of antibodies and viruses as in eq (1),
which define the fitness as in eqs (2 and 3). Genotypes within an antibody lineage share the
same accessibilities, fki; k̂ ig. For each generation, a poisson distributed number of mutations
occur, with each mutation flipping the sign of a site. Each generation is replaced by their off-
spring which inherit their parents’ genotype. Each parent generates a binomially distributed
number of offspring, with probability proportional to the exponential of its fitness, with the
constraint that the total number of individuals remains constant Na in antibodies and Nv in
viruses, which is equivalent to multinomial sampling. Note that we define fitness as “malthu-
sian”, which means that fitness is the relative growth rate of genotypes, and the expected num-
ber of offspring is proportional to the exponential of fitness.

Simulation parameters for all figures are Na = Nv = 103, ‘ ¼ ‘̂ ¼ 50, θa = θv = 1/50, and all
ki ¼ k̂ i ¼ 1, unless otherwise stated. Populations are initialized with all individuals having the
same randomly generated genotype. To measure quantities in the stationary state (Figs 2 and
4) simulations are run for 104 Na generations, and quantities are averaged from samples every
Na generations. Data from the beginning of the simulations are omitted from the calculations,
where the cutoff is t ¼ 2m�1

a , the correlation time for the mean binding (S3 Fig and Section B.4
of S1 Text). To produce the simulations shown in Fig 5B, the newly emerging antibody lineages
compete with the resident population as follows. First, the resident lineage is evolved with the
virus for 50Na generations to build up diversity. Simultaneously, the invading lineage is evolved
with the virus, except that the viral fitness is determined only by the resident lineage. This
ensures that invading lineages can marginally bind to the viral population, and are functional
lineage progenitors; a process that happens prior to affinity maturation in germinal centers.
The pre-adaptation of the invading lineage can also be interpreted as initial rounds of affinity
maturation in germinal centers isolated from competition with adapted antibody lineages.
Then the two antibody lineages are combined with resident at 90% and invader at 10%, with
a total size of 103, and the state of the system is recorded. The two lineages are evolved until
one is extinct, repeated over 100 replicates to estimate the fixation probability. The whole pro-
cedure is repeated 103 times for ensemble averaging. The invader, is either a normal lineage
with all κi = 1 and k̂ i ¼ 0 or a BnAb that binds only to the conserved region, κi = 0 and k̂ i ¼ 1.

Simulations are written in julia and code is available at https://github.com/jotwin/coevolution.

Analysis of HIV neutralization data
The data from Richman et al. [11] provides time-shifted measurements of viral neutralization
by a patient’s circulating antibodies. We approximated time-shifted viral fitness as the log-
ratio of neutralization titer (up to a constant c0) for plasma (antibodies) sampled at time t + τ
against viruses sampled at time t, relative to the control titer of the same plasma against the
neutralization-sensitive virus (NL43) [46], FV;τ(t) = −log (titer(Vt, At+τ)/titer(NL43, At+τ)) + c0;
titer is the reciprocal of antibody dilution where inhibition reaches 50% (IC50) [11]. Measuring
neutralization efficacy relative to NL43 control virus is necessary to account for the increasing
(non-stationary) antibody response during infection, shown in S8 Fig. Fig 4C shows the time-
shifted relative mean fitness FV;τ(t) averaged over all time-points t, evaluated for two patients
(TN-1 & TN-3), after linearly interpolating the raw data to produce equal time shifts (3
months for TN-1 and 6 months for TN-3). We fit the data to the analytical expression given by
eqs. (S102, S103) in S1 Text, by minimizing the mean squared error after scanning over four
composite evolutionary variables: (i) nucleotide diversity, which we infer to be equal for
antibodies and viruses θa’ θv = θ, (ii) selection component of the fitness flux in the viral
population S2vMV ;2, (iii) selection component of the transfer flux from antibodies to viruses,

−Sa Sv MA,2(Nv/Na), and (iv) the constant c0. Due to the functional form of time-shifted fitness
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given by eqs. (S102, S103) in S1 Text, brute force parameter scanning is necessary for a conver-
gent solution. Further details of data analysis and estimates of the fitted variables are given in
Section F of S1 Text.

Supporting Information
S1 Text. Supplementary information and detailed analytical derivations. (A) Antibody-viral
coevolution in genotype space, (B) Antibody-viral coevolution in phenotype space, (C) Fitness
flux and coevolutionary transfer flux, (D) Signature of coevolution from time-shifted fitness
measurements, (E) Evolution of multiple antibody lineages, and (F) Analysis of time-shifted
neutralization data.
(PDF)

S1 Fig. Effect of selection on the mean binding affinity. The rescaled mean binding affinity

for (A) the variable interaction region ε ¼ E=E0, and (B) the conserved region ε̂ ¼ Ê=E0, as a
function of selection coefficients. Stationary mean binding affinity is sensitive to selection on
antibodies in both variable and conserved regions. The conserved region is not sensitive to
viral selection strength. Points indicate simulation results, dashed lines indicate the stationary
solution given by eqs. (S59, S61) in S1 Text, using estimates for the diversity of the binding
affinity from the simulations, and solid lines are the stationary solutions (S59, S61) in S1
Text using the analytical estimates of the diversity from eq. (S75) in S1 Text. Parameters are:

ki ¼ k̂ i ¼ 1 for all sites, ‘ ¼ ‘̂ ¼ 50, Na = Nv = 1000, θa = θv = 1/50. Points are time averaged
values from simulations run for 106 Na generations, with values sampled every Na generations,
and data from first 100Na generations discarded.
(EPS)

S2 Fig. Effect of selection on the diversity and covarinace of binding affinity in antibodies
and viruses. Stationary diversity of the binding affinity for (A) the variable interaction region

mA;2 ¼ MA;2=E
2
0 , (B) the conserved interaction region m̂A;2 ¼ M̂A;2=Ê

2
0 in the antibody popula-

tion, and (C) the variable region in the viral populationmV ;2 ¼ MV ;2=E
2
0 plotted as a function

of viral and antibody selection coefficients. The diversity of binding across the antibodies in the
conserved region m̂A;2 in (B) is not sensitive to viral selection strength. (D) The magnitude of

the rescaled covariance due to genetic linkage between binding of the antibody to the conserved

and the variable regions, h½ðEa : � EÞðÊ a : � Ê Þ�
A
i=E0Ê 0, is much smaller than the diversity of

binding in each region, shown in (A) and (B). Points indicate simulation results with parame-
ters similar to S1 Fig, dashed lines indicate the stationary solution using estimates for higher
moments from the simulations (eqs. (S63, S64) in S1 Text), and solid lines indicate the full sta-
tionary solution given by eq. (S75) in S1 Text for antibodies, and the corresponding solution
for viruses. Theory lines begin to deviate from simulation results for large selection strengths
sa, sv> 1. The deviations are larger in antibodies due to neglecting the linkage correlation
between the variable and the conserved regions.
(EPS)

S3 Fig. Time-dependent statistics. Auto-correlation of the stationary mean binding affinity in
the variable region (red), eq. (S81) in S1 Text, has a shorter decay time than in the conserved
region (yellow), eq. (S82) in S1 Text. The decay time for the auto-correlation of the trait mean
in both variable and conserved regions, which is of order of the inverse mutation rate, is much
longer than the correlation time of the second moments (green, blue, purple), which decay on a
timescale of N generations. Solid lines are from stationary simulations, and dashed lines are the
analytical results for the auto-covariance of the moments given by, eq. (S81) (red), eq. (S82)
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(yellow) and eq. (S83) (black) in S1 Text, normalized to have magnitude 1 at separation

time Δτ = 0. Parameters are: all ki ¼ k̂ i ¼ 1, ‘ ¼ ‘̂ ¼ 50, Na = Nv = 1000, θa = θv = 1/50,
sa ¼ sv ¼ ŝa ¼ 1. Simulation results are time-averaged over 104 Na generations, with values
sampled every Na generations, and first 100Na generations omitted.
(EPS)

S4 Fig. Alternative fitness models. (A) Stationary mean binding affinity and (B) rate of anti-
body adaptation (fitness flux) due to selection, estimated by population fitness variance, for the
nonlinear-averaged fitness model (black) and the nonlinear-EVD fitness model with the num-
ber of interactions, R = 10 (red), R = 100 (green), and R = 1000 (blue). The mean binding affinity
is sensitive to the degree of non-linearity β, and binding threshold e�, but it is not very sensitive
to the number of interactions R. The selection coefficient sa is defined as in eq. (S39) in S1 Text.
Dashed line in (B) indicates the expected fitness variance for a linear-averaged fitness model,
h�

A
i ’ s2ahmA;2i, which is the selection component of the fitness flux in eq. (S91) in S1 Text.

Parameters are: ki ¼ k̂ i ¼ 1 for all sites, ℓ = 50, ‘̂ ¼ 0, Na = Nv = 1000, θa = θv = 1/50. Points are
time averaged values from simulations run for 105 Na generations, with values sampled every Na

generations, and data from first 100Na generations discarded.
(EPS)

S5 Fig. Stationary time-shifted binding affinity between antigens and antibodies. Analytical
estimates (dashed lines, eqs. (S102, S103) in S1 Text) for the ensemble-averaged time-shifted
binding affinity hετi between the viral population sampled at time t, and the antibody popula-
tion at time t + τ averaged over all t in the stationary state, show good agreements with the
numerical estimates of Wright-Fisher simulations (full lines), over a range of evolutionary
parameters. Parameters are Na = Nv = 1000 and κi = 1 for all sites, and the selection coefficients
and the nucleotide diversity as indicated by the legend. Results are time-averaged over 104 Na

generations, with first 100Na generations omitted.
(EPS)

S6 Fig. Non-stationary signature of coevolution from time-shifted fitness. Transient (non-
stationary) coevolution is quantified by the ensemble-averaged time-shifted mean fitness of the
viral population sampled at a reference time point of Nv generations after the beginning of the
simulation, that is before the system reaches a stationary state; see eqs. (S81, S82) in S1 Text.
For τ> 0, the time-shifted fitness hFV;τ (0)i (S99) measures the fitness of the focal viral popula-
tion at reference time 0 against the antibodies sampled at time +τ. For τ< 0, we show hFV;−τ
(τ)i, i.e., the time-shifted fitness with antibodies from t = 0 and viruses from time +τ. The fit-
ness function is shown for two evolutionary regimes, (i) stronger viral selection, sv = 2, sa = 1
(red) and (ii) weaker viral selection, sv = 1, sa = 2 (blue). The slope of time-shifted fitness at
τ = 0 measures the population’s fitness flux (dashed lines) and the transfer flux from the oppos-
ing population (dotted lines), estimated based on the phenotype statistics measured in the sim-
ulations (S92, S93). Fitness flux and transfer flux do not have equal values in a non-stationary
state, leading to the discontinuity in the slope of the time-shifted fitness function at τ = 0.

Parameters are ‘ ¼ ‘̂ ¼ 50, Na = Nv = 1000, θa = θv = 1/50. Populations are evolved for Nv gen-
erations to reach the reference time τ = 0, then data is collected over 100Nv generations. Results
are ensemble-averaged over 103 initializations.
(EPS)

S7 Fig. Neutralization titers of HIV against patients plasma. Neutralization activity (titer) of
plasma against autologous viruses collected at various time-points (colors) from two HIV
patients, (A) TN-1 and (B) TN-3 as reported by [11]. Neutralization titers are defined as the
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reciprocal of antibody dilution at the level that inhibition reaches 50% (IC50). In addition,
plasma activity against a neutralization-sensitive virus (NL43) is taken as a control measure-
ment (dashed line), which indicates an increasing antibody response over time.
(EPS)
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